cormac

HEALTH DATA ANALYTICS

Identifying Improper
Medicare Payments

Unsupervised Machine Learning Prototype
Using Medicare Skilled Nursing Facility (SNF)
Claims Data

$3.3 billion in federal funds are lost each year due to Improper Payment at Skilled Nursing Facilities. CORMAC's
Unsupervised Machine Learning Model provides a highly scalable machine driven way to identify claims that have a
high potential of being improper claims.

This approach provides a path to curtail improper payments before they are paid.




Machine Learning Approach to
Identifying Improper Payments

Background

Every year billions of dollars are wasted due to improper payments.
The majority of these improper payments is due to insufficient or no
documentation to substantiate the claim. CMS calculates the
Medicare Fee-for-Service (FFS) improper payment rate through the
Comprehensive Error Rate Testing (CERT) program. Each year, CERT
evaluates a statistically valid stratified random sample of claims to
determine if they were paid properly under Medicare coverage,
coding, and billing rules.

Approach

CORMAC's approach to identifying improper payments has been
through Machine Learning, particularly using an Unsupervised
Learning Algorithm on SNF data. The available SNF data lacked labels
which prompted the use of unsupervised machine learning
algorithms to estimate the multi-dimensional probability density
functions of the claims data.

Benefits

Analyzing each claim and assigning individual risk scores identifies a
set of claims at high risk of being improper. If CMS reviewers limit
their scope of evaluation to only this set of claims there would be
substantial savings in labor, and time. In addition to potentially
discovering (and rectifying) a larger number of actual improper
payments, the reviewers would not be spending as much time
looking at records that were highly likely to have been paid correctly.
Aside from the cost savings, the time savings would be substantial as
well.

Conclusion

The results produced from the Machine Learning Algorithm clearly
shows that there are many potential improper payments can be
identified before the payment is made to the provider. The machine
learning model would train itself by continuously feeding back the
improper claims. If these claims are analysed before the payments are
made, numerous improper payments can be avoided thus saving a
substantial amount of money and time for CMS.
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Architecture

We leveraged our Innovation Lab residing in Amazon Web Services (AWS). The architecture diagram

below depicts the process that SNF claims data underwent to produce the results. The results
generated are displayed using the Tableau BI tool to depict visualizations (Graphs are shown in the

oncoming pages).
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In preparation for analysis, the data from ResDAC was stored in S3 buckets and the data not in current
use was archived in Glacier. The data was cleansed as the first step in the process of analyzing,
identifying and correcting raw data. We used Python in a Jupyter notebook hosted in an EC2 instance
to cleanse and prepare the data. The prepared data was then stored in S3 before use by the machine
learning algorithms.

We utilized Spark deployed in EMR clusters to run unsupervised machine learning algorithms from
Spark MLIib libraries and Python libraries. The output of this process was the assignment of individual
risk scores to each claim. These risk scores were then prioritized, used for aggregate analysis and

population analysis to identify potential improper payments. We also employed Tableau for
visualizations and building dashboards.
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Machine Learning Model Findings — Sample Visualizations
1. TOP 30 PROVIDERS WITH THE HIGHEST RISK SCORES IN VERMONT:
The following graph shows the providers with highest average risk scores. The dots at the top
show the providers with higher risk claims that are worthy of further investigation.
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2. HIGH RISK CLAIMS IN VERMONT:
The following graph points out the high-risk claims in Vermont. The high-risk scores imply a
greater probability of a claim being an improper payment through incorrect coding or lack of

sufficient documentation
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3. TOP PROVIDERS WITH RISK SCORES IN VERMONT
This bar graph shows a comparison of Risk Scores based on the claims analyzed for each provider.
In particular, the higher bars indicate providers with fewer claims and higher risk scores; a
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4. MACHINE ANALYSIS OF A CLAIM:
An analysis of a single high-risk claim (MEDPAR ID 31307) spotted by the machine learning model.

claim: $193,460, Length of Stay in this claim: 25 days

Summary of Analysis:

¢ Long Stay, low-cost procedures and very high charge

e Many diagnoses with unspecified conditions

e More likely to be a case of insufficient documentation or incorrect coding

Hypertension NOS
(Unspecified essential
hypertension)

Acq coagul factor defic
(Acquired coagulation factor
deficiency)

2nd degree burn NOS (Blisters,
epidermal loss [second degree],
unspecified site)

DMII wo cmp uncntrld
(Diabetes mellitus without
mention of complication, type
Il or unspecified type,
uncontrolled)

Chest pain NOS (Chest pain,
unspecified)

Thrombocytopenia NOS
(Thrombocytopenia,
unspecified)

Liver disorder NOS
(Unspecified disorder of liver)

Alcoh dep NEC/NOS-unspec
(Other and unspecified alcohol
dependence, unspecified)

Liver disorder NOS
(Unspecified disorder of liver)

Procedures

Wound irrigation NEC (Other
irrigation of wound)

Electrocardiogram

Venous puncture NEC (Other
puncture of vein)

Skeletal x-ray of shoulder and
upper arm

Injection of insulin
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Overall Statistics: State of Arizona, Average DRG_PRICE: $74,418, DRG_PRICE of this
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